Robert Hancock

Microbiology & Immunology


Innate ImmunityFunctional Genomics of Pseudomonas aeruginosaAntibiotic ResistanceGene expression

Infectious diseases influence all areas of human endeavour. They are responsible for a third of all deaths on the planet, are currently the third leading cause of human deaths in North America, and also have a major impact on agriculture and food safety. However current therapeutic approaches based on antibiotics are under severe threat due to antibiotic resistance and the dearth (and ineffectiveness) of antibiotic discovery programs worldwide.

The Hancock laboratory is engaged in three basic types of research to address this growing problem; understanding the mechanism of action of cationic host defence (antimicrobial) peptides and their role as modulators of innate immunity (including basic functional genomic studies to define the innate immunity network in blood cells); the development of novel therapeutics based on the immunomodulatory and antibiotic activities of host defence peptides; and investigating the functional genomics of a prominent nosocomial pathogen, Pseudomonas aeruginosa, with specific reference to antibiotic resistance and the regulation of resistance and virulence. It is situated in approximately 8000 square feet of lab bench space and 2000 square feet of office space at the Lower Mall Research Station on campus and is well equipped, technologically diverse and well funded.